
Figure 3 shows the dependence of  the path on the time for the shock wave 2 and the piston 1, as well as experi- 
mental curves of  the displacement of  the center of  gravity of the current 4 and the front of  the luminescence 3 with a 
pressure of 760 and 400 mm Hg (Fig. 3a and b, repsectively) [5]. I t  can be seen that the pressure of  the current layer 
and the front of  the luminescence, which can be connected with the magnetic piston and the shock wave, are in qualitative 
agreement with Calculation; however, at the initial moment ,  the piston does not  capture the gas completely and, for this 
reason, the experimental  curves lie above the calculated. A shell is obviously formed at a distance of  around 1 cm from 
the point  of  the breakdown, which is in agreement with the above-mentioned evaluations of  the formation time of  the 
piston. Therefore, lines 5 and 6 show experimental  curves with a shift of the point  of  breakdown downward by 1 cm with 
respect to the point  of  formation of  the shell. With lower pressures (30-100 mm Hg), the discharge starts in the conical 
part  of  a nozzle of  variable cross section, and there is ablation of  the insulator; therefore, a comparison between calculation 
and experiment is not  justified here, since in this case the constant of  the magnetic pressure depends on the time. 

The authors wish to express their thanks to V. S. Imshennik for his valuable evaluation of  the work. 
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DEVELOPMENT OF DYNAMIC FORMS OF BUCKLING OF 

ELASTOPLASTIC BEAMS WITH INTENSIVE LOADING 

V. M. Kornev, A. V. Markin, and I. V. Yakovlev UDC 624.074.4 

1. We consider an I-beam. At  the initial moment  of time, an intensive longitudinal constant load is suddently 
applied to the beam; in the theoretical analysis, longitudinal vibrations are not  taken into consideration. The intensive 
compressive loading is considerably greater than an Euler loading [ 1]. We assume that this compressive load corresponds 
to stresses exceeding the elastic limit. I t  is assumed that the bending takes place in the plane of the web, while the bend- 
ing moment  is taken up only by the flanges of the I-beam. A study is made of the development with time of the forms 
of inelastic buckling of  beams with small normal bends w. Equating the sum of the internal forces with respect to the 
neutral line to the external moment ,  we find the equation of the curved axis of the I-beam [2] 

TIw.~x.~ + Nw:~ + pSw~t = --Ar(w0.~ + wlxx). (1.1) 

Since, before loading, the freely supported beam was at rest, the initial and boundary conditions have the form 

w = w  t = 0 ,  t = 0 ,  O ~ z ~ L ;  
w =w~.~ = 0 ,  x = 0 ,  L, t ~ 0 ,  (1.2) 

where w is the additional normal deflection; x and t are the longitudinal coordinate and the time; N is an intensive 
longitudinal load; T = 2E1EJ(E1 -k E~) the modulus of elasticity and relief; E 2 is the reduction modulus (Fig. 1); E = E 1 is 

the tangential modulus;  w o and w 1 are the initial regularities of the beam and the shift of  the central line for cross sections of  
the beam; S and I are the constant area and moment  of  inertia of  a transverse cross section; L is the length of  the beam. 

The function w I (x), characterizing the shift of the central line, is subject to determination. With determination of  

w~, use is made of  an idealized o - e  diagram, Fig. 1, and the assumption N = const. Figure 2a shows an I-beam; the 

flanges of  the I-beam are connected by a thin web. Three cases of  the loading of beams at the initial moment  of time 
(t  -- 0) are considered: 1) the beam remains elastic; 2) the stresses in the beam considerably exceed the elastic limit (point  
c on the idealized diagram of Fig. 1); 3) the stresses coincide with the elastic limit (point  b on the idealized diagram). The 
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distribution of  the rigidities in Fig. 2c and the shift in the neut ra l  line in Fig. 2d are shown by the d a s h - d o t ,  dashed, and 
continuous curves, respectively, for the first, second, and third cases (the notat ion is analogous in Fig. 3). 

The maximum of the function of  the shift of  the neutral line is found from the equality to zero of  the resultant 
bending stresses (Fig. 2d) 

m a x  l w t  I ----- h(E1 - -  E~)/2(Et + E2), (1.3) 

where h is the distance between the centers of  gravity of  the flanges of the beam. The shift in W 1 is determined by the 
relationship between the modulus of  the unloading and the tangential modulus. For  real beams, made of  structural steels, 
the value of  the initial shift is such that max [wl] >> max ]w0] , where the beams were obtained by the machining of  billets. 

The problem obtained (1.1), (1.2), taking account of relationship (1.3) almost coincides with the analogous problem 
for an elastic beam [1 ]. An analysis is then made of  motions in systems with one degree of freedom; the rise in the ampli- 
tude of the deflections in simplified systems is shown in Fig. 3. This degree of  freedom corresponds to a form with the 
number m , .  The determination of  the number m ,  differs in no way from [ t] ,  since the equation of the cited work and 
Eq. (1.1) have constant  coefficients. Thus, we have w(x, t) = q(t) sin m,Trx/L. The approximation of the starting system 
with one degree of  freedom is in agreement with the experimental  results given below, where there is a simple toading 
program. 

After  appropriate transformations, the problem (1.1), (1.2) is reduced to the following simple problem :for q(t): 

q " - -  a2q = F ,  q = q '  = 0  (t = 0 ) ,  

_ N_~. = a ~ f l  F = (o) , ( t )  
p S L  4 * 

where ~7 is the parameter  of  the intensity of  the loading; N e is an Euler load; c~ ~ and c~') are coefficients, corresponding 

to the Fourier  coefficient of the funct ions w o and w, .  The  number m ,  corresponds to motion describing the buckling of 

an elastoplastic beam; q = Fcc: (ch c~t - 1). Finally, for additional bending, we have w = Foz -2 (ch c~t - 1)sin m,Trx/L. 

We note that the rate of  growth of  the amplitude of  the additional bending in the inelastic case is considerably greater 
than in the elastic case, since Ic(t 1) I >> I c(1 o) I. 

At  the moment  of  time t = t~, the constant compressive force is removed. Let the beam then be deformed 

elastically. The behavior of  the beam in the period of  time t > t 1 is described by Eq. (1.1) with N = 0 and E = E, = E 2 

(w~ - 0). As before we assume that the form of  the additional bending coincided with a determined form of buckling. 

The mot ion of  the beam with t > t 1 becomes vibrational q~ = A cos a~(t - -  t~) @ B sin a~ (t - -  t~). For  the additional 
bending w 2 we obtain 

u',. = [Fcz-2(ch a t  1 - -  t) cos a I (t - -  tx) -f- F a  -1 sh a t i  sin cr 1 (t - -  tl)] sin (m , ,~x /L) .  (1.4) 

We note that  the expression constructed above (1.4) for the additional bending w 2 describes the behavior of  an 
elastoplastic beam as a system with one degree of  freedom, and is an evaluation close to an upper evaluation of' the value 
of the bending. 

2. Intensive loading of  the beam was carried out  in a special unit, a scheme of  which is shown in Fig. 4. Isolation 
of  the plane of  the deformation of  the beam 1 was assured by the side walls 2 of  the assembly. The time of  action of  the 
pressure of  the explosion products with the detonation of  an explosive 3 is usually small; to increase this time, a layer of  
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porous metallic material  5 is placed between the charge of  explosive and the striker 4. The exposive was ammonite 6ZhV. 
The value of  the displacement of  the striker was varied by a change in the starting distance between the striker and the 
intersecting plate 6. 

Two series of  experiments were made; in the first series, the weighed port ion of explosive and the thickness of the 
porous material were selected experimentally.  In the second series of  experiments,  the height of  the layer of  explosive 
(without  a generator of  a plane shock wave) was 50 mm, and the thickness of  the layer (80 mm) of  metallic porous 
material assured a duration of  the action of  a load of  ~35 tons on the firing pin of  the order of  10 -s sec (more exactly 
from 10 -s to 10 -4 sec), taking account of  the ratio of  the masses of  the striker and the compressed beam. In the second 
series, the longitudinal shifts of  the unit  in the first four experiments differ from the last two, since in the first experiments 
the unit  with the beam was mounted on a table of metallic shot, while, in the fifth and sixth experiments,  the unit rested 
on a solid steel table. By the same token, from the first to the fourth experiments, a simple loading program was effected: 
with 0 ~< t ~< t 1 the load is close to constant,  and is then removed. In the two last experiments,  the program was more 

complex;  with the first passage of  an inelastic wave, the load is close to constant, and, with reflection from the support,  
the longitudinal load rises due to the great rigidity of the table (in the calculations it was assumed that, after reflection, 
the load increased by 1.75 times [3]). In the second series of  experiments,  partial breakdown of  the samples was observed. 

The I-beams for the tests were made from an All-Union State Standard (GOST) 2591-71 square rod with limiting 
deviations of  its dimensions of  0.5 mm, followed by milling of  the channels. The length of  the sample L = 200 ram, the 
side of  the square 10 ram, and width of  a channel 4 mm, and the thickness of  the thin wall 1.5 r a m .  The material of  
the rod was steel 9KhS GOST 5950-63 in the delivered condition. The dependence of  the stresses on the deformation 
with compression for samples of  the above material is shown in Fig. 1. The elastic modulus El and the tangential modulus 

E z are equal to E 1 = 2.35"106 kg/cm 2, E 2 = 7.4"104 kg/cm 2 [4]. 

Figure 5 shows the projection of the profile of  a beam after tests in the plane of  the bending; the loading end is on 
the left. The samples were measured in a universal UIM-21 instrumental microscope; the exactness of  the measurements 
was one micron. To elucidate the validity of  the postulation that the behavior of  a complex inelastic system can be 
described by the mot ion  of  a system with one degree of  freedom, the residual deflections of  the beams were analyzed. 
These deflections were represented in the form of  Fourier  series. The results of a harmonic analysis of the experimental 
results are given in Table 1, where, in the first row there are shown the numbers of the beams, while, in a vertical direction 
there are arranged the first four coefficients of the Fourier  series for the six samples tested. 

We recall that, with the intensive loading of elastic beams in a finite interval of time [5], either one or two forms 
of  the motion can be distinguished, where this interval is not  very small. In Section 1 simple relationships were obtained 
for the residual deflections of  inelastic beams with one determined form of  motion. 

In the experiments (see Table 1) for samples 2, 3, 5, this corresponds to the first, second, and fourth forms. For  
samples 1, 4, 6, there are two determining forms of  motion,  respectively: second and third, first and second, second and 
fourth. From Table 1 it can be seen that the determining form of  motion with elastoplastic buckling is the second form 
m .  = 2 for the first four samples. 

The residual deflections are evaluated by the formula 

q : c]l)a -~ (eh czt 1 -- I), (2.1) 

where the c o n s t a n t  c~ 1) corresponds to a shift in the central axis in an inelastic beam max lwxl = 3.3 mm. The measured 

initial irregularities before the tests of  the beams are such that max Iw0l = 0.1 mm. We note that for elastic strain or for the in- 
elastic strain, if we follow the method of [2] ,  the constant in Eq. (2.1) is substituted for c]~ c(~x) I >> c]~ ). 

The loading time in the experiments was regulated by the value of the displacement l of  the striker, and was roughly 
calculated by the formulas 
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TABLE 1 

I I 

qt (q) { 0,1t 

2 

--0,54 

q4 (t:) I 

3 

--1,28 I --4,65 

5 

--0,14 

--2,6 I 

6 

--t,89 

q' (ti) I --0,22 0,02 l*,48 I 4,56 0,9 3,13 

q3<)  J 0,15 0,22 -0,94 ] -o ,a5 -0,89 -1 ,5 :  

0,19 0,19 --2,45 3,4 3,17 

TABLE 2 

ta. 10 *, ~eC 

0.1 
0,4 

0,2 
0,8 

0.t7 

, I 

O,tt 
1,97 

I%.~1 

0,002 
0,06 

I 3 

0,22 

z I~ml 

0,46 
t0,2 

0,t8 
8,86 

0,009 
0,3 

0,005 
0,27 

0,67; 0,97 

I 
4,48 ] 9,3; i2,0 

3,t3 5,33; 9,7t 

t i  = l (Tn) l /~rs -Z;  (2.2) 

t l  = l ( E ~  (2.3) 

where o is the compressive stress in the beam. Table 2 (columns 1, 2) gives evaluation of  the amplitudes of the determin- 
ing form of motion in accordance with the proposed method and the method of [2]. Column 3 gives the amplitudes of 
the buckling of  the first, third, and sixth beams. In Table 2 the numerator is the loading time calculated using formula 
(2.2) and the corresponding amplitude (2.1); the denominator gives analogous characteristics, calculated in accordance 
with formulas (2.3), (2.1). 

In experiments on samples 5-6, the unit was mounted on a rigid baseplate. According to the data of [3], the 
stresses in a beam increase by 1.75 times on the average, which led to the breakdown of sample 6. A theoretical deter- 
mining form of the motion (m,  = 2, m .  = 3) in experiments on samples 5, 6, could not be achieved, due to the complex 
loading program. The last column in Table 2 gives upper evaluations for the amplitudes of the deflections, respectively, 
of  the first and second, third and fourth, fifth and sixth beams. 

As we can see, the evaluation obtained for the value of the residual deflection gives satisfactory agreement with 
experiment. In samples 1 and 2, the initial state of the motion was recorded, the forms of the buckling are equally 
correct, and the deflections are small. We note the great sensitivity of the process of the buckling of a beam to a change 
in the time of  the action of  the load. An increase in the loading time by 2 times leads to an increase in the deflections 
by an order of  magnitude. 
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